THE CONSTITUTION OF THE RADICAL INTERMEDIATE BETWEEN FORMAZAN AND TETRAZOLIUMSALT

Franz A. Neugebauer

Max-Planck-Institut für Medizinische Forschung, Institut für Chemie, Heidelberg, Germany

Department of Chemistry, Iowa State University, Ames, Iowa 50010

(Received in USA 11 January 1968)

The reduction of 2,3,5-triphenyltetrazolium salts^{1,2,3}) the oxydation of N,N', C-triphenylformazan by air^{2}) or the disproportionation of formazan-tetrazolium salt in the presence of base²) gives rise to a paramagnetic species. The esr spectrum shows 9 lines easily explained by two pairs of equivalent nitrogens.^{1,2,3})

The radical can be represented either as an open chain <u>1</u> or as a cyclic tetrazolinyl structure <u>2</u> related to the verdazyls ($R = C_6H_5$).

A very convenient new method to prepare this radical is the dehydrogenation of formazans by di(p-tolyl)nitrogen in benzene or other solvents. The esr spectrum of the radical derived from N_NN' -diphenyl-Cbenzeneazoformazan should determine whether 3 or 4 is the true representation of the radical intermediate. Structure 3 demands two sets of 3 equivalent nitrogens.

The esr spectrum obtained (Figure 1) shows 9 groups easily interpreted by two pairs of equivalent nitrogens and excludes the open structure $\underline{3}$.

This result is in agreement with McLachlan calculations of the π -radicals <u>1</u> and <u>2</u>. They show for <u>1</u> high spin densities in N-1, N-5 and C-3 and considerably smaller spin densities in N-2 and N-4. Structure <u>2</u> yields high spin densities of the same order in all four nitrogens, a small negative spin density in C-5 and very small spin densities in the substituent of C-5.

Figure 1.- First-derivative esr spectrum observed for the radical produced by dehydrogenation of N,N'-diphenyl-C-benzeneazoformazan in benzene.

The N-2, N-3 nitrogen splitting of the tetrazolinyl radicals should be sensitive to different substitution in the p-positions of the N-phenyl rings. Table 1 indicates that the larger nitrogen splitting is changed in a Hammett relationship (OCH₃ > H > NO₂). This assignment will be verified by N¹⁵ labelling.

TABLE 1

Ř

The HFSC of 2,3,5-Substituted Tetrazolinyl Radicals in Benzene

$R^2 = R^3$	R ⁵	a_1	a_2 ^N	$a^{H_O} = a^{H_P} (R^2, R^3)$
C ₆ H ₅ -	CeH5-	5.6	7.5	
C ₆ H ₅ -	C₀H 5 —N==N-	5.8	7.5	
4-02NC8H4-	C ₈ H ₅ -	5.6	6.5	
4-CH3OC6H4-	CeH5-	5.5	8.0	
3,5-Cl₂C₀H₃-	4-02NC6H4-	5.7	7.5	0.9

Figure 2.- First-derivative esr spectrum of 2,3-bis-(3,5-dichlorophenyl)-5-(4-nitrophenyl)-tetrazolinyl in benzene.

The selective substitution of the m-hydrogens in the N-phenyl rings by chlorine yields a further resolved esr spectrum (Figure 2). Besides the nitrogen splittings a septet of 6 protons is obtained, which is attributed (based on the McLachlan calculations) to the protons in o- and p-positions of the N-phenyl rings.

The cyclic 7 fl-electron system of the tetrazolinyl radicals $\underline{2}$ is closely related to the 7 fl-electron system of the verdazyls $\underline{5}$ and tetraazapentenyls $\underline{6}$.⁴) Compounds $\underline{5}$ and $\underline{6}$ represent also the paramagnetic intermediate between a cation and a leuco stage.

REFERENCES

- Te-Liang Kuo, K'o Hsuch T'ung Pao, 1963 (8), 55; R. T. Lofberg, Nature 206, 503 (1965).
- 2. 0. W. Maender and G. A. Russell, J. Org. Chem., 31, 442 (1966).
- 3. Y. Deguchi and Y. Takagi, Tetrahedron Letters 1967, 3179.
- R. Kuhn, F. A. Neugebauer and H. Trischmann, <u>Monatsh</u>. Chem., <u>98</u>, 726 (1967); and references herein.